向潜在客户展示广告而不是通常称为“增量”的因果效应是广告有效性的基本问题。在数字广告中,三个主要难题对于严格量化广告增量的核心:广告购买/竞标/定价,归因和实验。在机器学习和因果计量经济学基础的基础上,我们提出了一种方法,将这三个概念统一为竞标和归因的计算可行模型,该模型涵盖了广告效应的随机化,培训,交叉验证,评分,评分和转换归因。这种方法的实施很可能可以确保广告回报率的重大改善。
translated by 谷歌翻译
In this work we introduce reinforcement learning techniques for solving lexicographic multi-objective problems. These are problems that involve multiple reward signals, and where the goal is to learn a policy that maximises the first reward signal, and subject to this constraint also maximises the second reward signal, and so on. We present a family of both action-value and policy gradient algorithms that can be used to solve such problems, and prove that they converge to policies that are lexicographically optimal. We evaluate the scalability and performance of these algorithms empirically, demonstrating their practical applicability. As a more specific application, we show how our algorithms can be used to impose safety constraints on the behaviour of an agent, and compare their performance in this context with that of other constrained reinforcement learning algorithms.
translated by 谷歌翻译
Large-scale models combining text and images have made incredible progress in recent years. However, they can still fail at tasks requiring compositional knowledge, such as correctly picking out a red cube from a picture of multiple shapes. We examine the ability of CLIP (Radford et al., 2021), to caption images requiring compositional knowledge. We implement five compositional language models to probe the kinds of structure that CLIP may be using, and develop a novel training algorithm, Compositional Skipgram for Images (CoSI), to train these models. We look at performance in attribute-based tasks, requiring the identification of a particular combination of attribute and object (such as "red cube"), and in relational settings, where the spatial relation between two shapes (such as "cube behind sphere") must be identified. We find that in some conditions, CLIP is able to learn attribute-object labellings, and to generalize to unseen attribute-object combinations. However, we also see evidence that CLIP is not able to bind features together reliably. Moreover, CLIP is not able to reliably learn relations between objects, whereas some compositional models are able to learn these perfectly. Of the five models we developed, none were able to generalize to unseen relations.
translated by 谷歌翻译
Prior work has shown that it is possible to expand pretrained Masked Language Models (MLMs) to new languages by learning a new set of embeddings, while keeping the transformer body frozen. Despite learning a small subset of parameters, this approach is not compute-efficient, as training the new embeddings requires a full forward and backward pass over the entire model. In this work, we propose mini-model adaptation, a compute-efficient alternative that builds a shallow mini-model from a fraction of a large model's parameters. New language-specific embeddings can then be efficiently trained over the mini-model, and plugged into the aligned large model for rapid cross-lingual transfer. We explore two approaches to learn mini-models: MiniJoint, which jointly pretrains the primary model and the mini-model using a single transformer with a secondary MLM head at a middle layer; and MiniPost, where we start from a regular pretrained model and build a mini-model by extracting and freezing a few layers and learning a small number of parameters on top. Experiments on XNLI, MLQA and PAWS-X show that mini-model adaptation matches the performance of the standard approach using up to 2.4x less compute.
translated by 谷歌翻译
Despite many recent advancements in language modeling, state-of-the-art language models lack grounding in the real world and struggle with tasks involving complex reasoning. Meanwhile, advances in the symbolic reasoning capabilities of AI have led to systems that outperform humans in games like chess and Go (Silver et al., 2018). Chess commentary provides an interesting domain for bridging these two fields of research, as it requires reasoning over a complex board state and providing analyses in natural language. In this work we demonstrate how to combine symbolic reasoning engines with controllable language models to generate chess commentaries. We conduct experiments to demonstrate that our approach generates commentaries that are preferred by human judges over previous baselines.
translated by 谷歌翻译
Large-scale generative models show an impressive ability to perform a wide range of Natural Language Processing (NLP) tasks using in-context learning, where a few examples are used to describe a task to the model. For Machine Translation (MT), these examples are typically randomly sampled from the development dataset with a similar distribution as the evaluation set. However, it is unclear how the choice of these in-context examples and their ordering impacts the output translation quality. In this work, we aim to understand the properties of good in-context examples for MT in both in-domain and out-of-domain settings. We show that the translation quality and the domain of the in-context examples matter and that 1-shot noisy unrelated example can have a catastrophic impact on output quality. While concatenating multiple random examples reduces the effect of noise, a single good prompt optimized to maximize translation quality on the development dataset can elicit learned information from the pre-trained language model. Adding similar examples based on an n-gram overlap with the test source significantly and consistently improves the translation quality of the outputs, outperforming a strong kNN-MT baseline in 2 out of 4 out-of-domain datasets.
translated by 谷歌翻译
Existing language models (LMs) predict tokens with a softmax over a finite vocabulary, which can make it difficult to predict rare tokens or phrases. We introduce NPM, the first nonparametric masked language model that replaces this softmax with a nonparametric distribution over every phrase in a reference corpus. We show that NPM can be efficiently trained with a contrastive objective and an in-batch approximation to full corpus retrieval. Zero-shot evaluation on 9 closed-set tasks and 7 open-set tasks demonstrates that NPM outperforms significantly larger parametric models, either with or without a retrieve-and-generate approach. It is particularly better on dealing with rare patterns (word senses or facts), and predicting rare or nearly unseen words (e.g., non-Latin script). We release the model and code at github.com/facebookresearch/NPM.
translated by 谷歌翻译
Vehicle routing problems and other combinatorial optimization problems have been approximately solved by reinforcement learning agents with policies based on encoder-decoder models with attention mechanisms. These techniques are of substantial interest but still cannot solve the complex routing problems that arise in a realistic setting which can have many trucks and complex requirements. With the aim of making reinforcement learning a viable technique for supply chain optimization, we develop new extensions to encoder-decoder models for vehicle routing that allow for complex supply chains using classical computing today and quantum computing in the future. We make two major generalizations. First, our model allows for routing problems with multiple trucks. Second, we move away from the simple requirement of having a truck deliver items from nodes to one special depot node, and instead allow for a complex tensor demand structure. We show how our model, even if trained only for a small number of trucks, can be embedded into a large supply chain to yield viable solutions.
translated by 谷歌翻译
Problem instances of a size suitable for practical applications are not likely to be addressed during the noisy intermediate-scale quantum (NISQ) period with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms have potential, however, to achieve good performance on much larger problem instances. We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure. We use reinforcement learning with neural networks with embedded quantum circuits. In such neural networks, projecting high-dimensional feature vectors down to smaller vectors is necessary to accommodate restrictions on the number of qubits of NISQ hardware. However, we use a multi-head attention mechanism where, even in classical machine learning, such projections are natural and desirable. We consider data from the truck routing logistics of a company in the automotive sector, and apply our methodology by decomposing into small teams of trucks, and we find results comparable to human truck assignment.
translated by 谷歌翻译
Sampling diverse programs from a code language model and reranking with model likelihood is a popular method for code generation but it is prone to preferring degenerate solutions. Inspired by collaborative programming, we propose Coder-Reviewer reranking. We augment Coder language models from past work, which generate programs given language instructions, with Reviewer models, which evaluate the likelihood of the instruction given the generated programs. We perform an extensive study across six datasets with eight models from three model families. Experimental results show that Coder-Reviewer reranking leads to consistent and significant improvement (up to 17% absolute accuracy gain) over reranking with the Coder model only. When combined with executability filtering, Coder-Reviewer reranking can often outperform the minimum Bayes risk method. Coder-Reviewer reranking is easy to implement by prompting, can generalize to different programming languages, and works well with off-the-shelf hyperparameters.
translated by 谷歌翻译